How To Make Amazing RGB Ring Light
Hello friends, this is a RGB ring light for your lovely table using old plastic jar , PVC pipe and RGB led. In this project I used WS2812B LED strip for light and arduino nano to control led strip. Here I used total 35 Nos led but you can increase number of led just change the number of led in code before uploading.
Components :
1) ws2812B led strip 60led/m : https://roboman.in/qtch
2) ws2812B led strip 30led/m : https://roboman.in/6r9a
3) Micro USB Socket : : https://roboman.in/7pas
4) Arduino Nano: https://roboman.in/59h4
5) Arduino Nano Type C : https://roboman.in/xkfu
6) SPST Switch : https://roboman.in/74he
Diagram :
Code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
#include <FastLED.h> FASTLED_USING_NAMESPACE // FastLED "100-lines-of-code" demo reel, showing just a few // of the kinds of animation patterns you can quickly and easily // compose using FastLED. // // This example also shows one easy way to define multiple // animations patterns and have them automatically rotate. // // -Mark Kriegsman, December 2014 #if defined(FASTLED_VERSION) && (FASTLED_VERSION < 3001000) #warning "Requires FastLED 3.1 or later; check github for latest code." #endif #define DATA_PIN 6 #define LED_TYPE WS2811 #define COLOR_ORDER GRB #define NUM_LEDS 35 #define UPDATES_PER_SECOND 100 CRGB leds[NUM_LEDS]; #define BRIGHTNESS 255 #define FRAMES_PER_SECOND 120 #define COOLING 55 #define SPARKING 120 bool gReverseDirection = false; CRGBPalette16 gPal; CRGBPalette16 pacifica_palette_1 = { 0x000507, 0x000409, 0x00030B, 0x00030D, 0x000210, 0x000212, 0x000114, 0x000117, 0x000019, 0x00001C, 0x000026, 0x000031, 0x00003B, 0x000046, 0x14554B, 0x28AA50 }; CRGBPalette16 pacifica_palette_2 = { 0x000507, 0x000409, 0x00030B, 0x00030D, 0x000210, 0x000212, 0x000114, 0x000117, 0x000019, 0x00001C, 0x000026, 0x000031, 0x00003B, 0x000046, 0x0C5F52, 0x19BE5F }; CRGBPalette16 pacifica_palette_3 = { 0x000208, 0x00030E, 0x000514, 0x00061A, 0x000820, 0x000927, 0x000B2D, 0x000C33, 0x000E39, 0x001040, 0x001450, 0x001860, 0x001C70, 0x002080, 0x1040BF, 0x2060FF }; CRGBPalette16 currentPalette; TBlendType currentBlending; extern CRGBPalette16 myRedWhiteBluePalette; extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM; void setup() { delay(3000); // 3 second delay for recovery // tell FastLED about the LED strip configuration FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip); //FastLED.addLeds<LED_TYPE,DATA_PIN,CLK_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip); // set master brightness control FastLED.setBrightness(BRIGHTNESS); } // List of patterns to cycle through. Each is defined as a separate function below. typedef void (*SimplePatternList[])(); SimplePatternList gPatterns = { rainbow, rainbowWithGlitter, confetti, sinelon, juggle, bpm,Fire2012,first_light,second_light,cylon,pacifica_loop,rgbsetdemo }; //SimplePatternList gPatterns = { rainbow, rainbowWithGlitter, confetti, sinelon, juggle, bpm,Fire2012,Fire2012WithPalette,first_light,second_light,cylon,pacifica_loop,rgbsetdemo,colorpalete }; //SimplePatternList gPatterns = { colorpalete }; uint8_t gCurrentPatternNumber = 0; // Index number of which pattern is current uint8_t gHue = 0; // rotating "base color" used by many of the patterns void loop() { // Call the current pattern function once, updating the 'leds' array gPatterns[gCurrentPatternNumber](); // send the 'leds' array out to the actual LED strip FastLED.show(); // insert a delay to keep the framerate modest FastLED.delay(1000/FRAMES_PER_SECOND); // do some periodic updates EVERY_N_MILLISECONDS( 20 ) { gHue++; } // slowly cycle the "base color" through the rainbow EVERY_N_SECONDS( 20 ) { nextPattern(); } // change patterns periodically } #define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0])) void nextPattern() { // add one to the current pattern number, and wrap around at the end gCurrentPatternNumber = (gCurrentPatternNumber + 1) % ARRAY_SIZE( gPatterns); } void rainbow() { // FastLED's built-in rainbow generator fill_rainbow( leds, NUM_LEDS, gHue, 7); } void rainbowWithGlitter() { // built-in FastLED rainbow, plus some random sparkly glitter rainbow(); addGlitter(80); } void addGlitter( fract8 chanceOfGlitter) { if( random8() < chanceOfGlitter) { leds[ random16(NUM_LEDS) ] += CRGB::White; } } void confetti() { // random colored speckles that blink in and fade smoothly fadeToBlackBy( leds, NUM_LEDS, 10); int pos = random16(NUM_LEDS); leds[pos] += CHSV( gHue + random8(64), 200, 255); } void sinelon() { // a colored dot sweeping back and forth, with fading trails fadeToBlackBy( leds, NUM_LEDS, 20); int pos = beatsin16( 13, 0, NUM_LEDS-1 ); leds[pos] += CHSV( gHue, 255, 192); } void bpm() { // colored stripes pulsing at a defined Beats-Per-Minute (BPM) uint8_t BeatsPerMinute = 62; CRGBPalette16 palette = PartyColors_p; uint8_t beat = beatsin8( BeatsPerMinute, 64, 255); for( int i = 0; i < NUM_LEDS; i++) { //9948 leds[i] = ColorFromPalette(palette, gHue+(i*2), beat-gHue+(i*10)); } } void juggle() { // eight colored dots, weaving in and out of sync with each other fadeToBlackBy( leds, NUM_LEDS, 20); byte dothue = 0; for( int i = 0; i < 8; i++) { leds[beatsin16( i+7, 0, NUM_LEDS-1 )] |= CHSV(dothue, 200, 255); dothue += 32; } } void Fire2012() { // Array of temperature readings at each simulation cell static byte heat[NUM_LEDS]; // Step 1. Cool down every cell a little for( int i = 0; i < NUM_LEDS; i++) { heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2)); } // Step 2. Heat from each cell drifts 'up' and diffuses a little for( int k= NUM_LEDS - 1; k >= 2; k--) { heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3; } // Step 3. Randomly ignite new 'sparks' of heat near the bottom if( random8() < SPARKING ) { int y = random8(7); heat[y] = qadd8( heat[y], random8(160,255) ); } // Step 4. Map from heat cells to LED colors for( int j = 0; j < NUM_LEDS; j++) { CRGB color = HeatColor( heat[j]); int pixelnumber; if( gReverseDirection ) { pixelnumber = (NUM_LEDS-1) - j; } else { pixelnumber = j; } leds[pixelnumber] = color; } } void first_light(){ static uint8_t hue = 0; for(int whiteLed = 0; whiteLed < NUM_LEDS; whiteLed = whiteLed + 1) { // Turn our current led on to white, then show the leds leds[whiteLed] = CHSV(hue++, 255, 255); // Show the leds (only one of which is set to white, from above) FastLED.show(); // Wait a little bit delay(1); // Turn our current led back to black for the next loop around leds[whiteLed] = leds[whiteLed] = CRGB::Black; } } void second_light(){ static uint8_t hue = 0; for(int whiteLed = 0; whiteLed < NUM_LEDS; whiteLed = whiteLed + 1) { // Turn our current led on to white, then show the leds leds[whiteLed] = CHSV(hue++, 255, 255); // Show the leds (only one of which is set to white, from above) FastLED.show(); // Wait a little bit delay(1); // Turn our current led back to black for the next loop around leds[whiteLed] = CHSV(hue++, 255, 255); } } void cylon(){ static uint8_t hue = 0; // Serial.print("x"); // First slide the led in one direction for(int i = 0; i < NUM_LEDS; i++) { // Set the i'th led to red leds[i] = CHSV(hue++, 255, 255); // Show the leds FastLED.show(); // now that we've shown the leds, reset the i'th led to black // leds[i] = CRGB::Black; fadeall(); // Wait a little bit before we loop around and do it again delay(5); } //Serial.print("x"); // Now go in the other direction. for(int i = (NUM_LEDS)-1; i >= 0; i--) { // Set the i'th led to red leds[i] = CHSV(hue++, 255, 255); // Show the leds FastLED.show(); // now that we've shown the leds, reset the i'th led to black // leds[i] = CRGB::Black; fadeall(); // Wait a little bit before we loop around and do it again delay(5); } } void fadeall() { for(int i = 0; i < NUM_LEDS; i++) { leds[i].nscale8(250); } } void Fire2012WithPalette() { // Array of temperature readings at each simulation cell static byte heat[NUM_LEDS]; // Step 1. Cool down every cell a little for( int i = 0; i < NUM_LEDS; i++) { heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2)); } // Step 2. Heat from each cell drifts 'up' and diffuses a little for( int k= NUM_LEDS - 1; k >= 2; k--) { heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3; } // Step 3. Randomly ignite new 'sparks' of heat near the bottom if( random8() < SPARKING ) { int y = random8(7); heat[y] = qadd8( heat[y], random8(160,255) ); } // Step 4. Map from heat cells to LED colors for( int j = 0; j < NUM_LEDS; j++) { // Scale the heat value from 0-255 down to 0-240 // for best results with color palettes. byte colorindex = scale8( heat[j], 240); CRGB color = ColorFromPalette( gPal, colorindex); int pixelnumber; if( gReverseDirection ) { pixelnumber = (NUM_LEDS-1) - j; } else { pixelnumber = j; } leds[pixelnumber] = color; } } void rgbsetdemo(){ CRGBArray<NUM_LEDS> leds; FastLED.addLeds<NEOPIXEL,6>(leds, NUM_LEDS); static uint8_t hue; for(int i = 0; i < NUM_LEDS/2; i++) { // fade everything out leds.fadeToBlackBy(20); // let's set an led value leds[i] = CHSV(hue++,255,255); // now, let's first 20 leds to the top 20 leds, leds(NUM_LEDS/2,NUM_LEDS-1) = leds(NUM_LEDS/2 - 1 ,0); FastLED.delay(13); } } void pacifica_loop() { // Increment the four "color index start" counters, one for each wave layer. // Each is incremented at a different speed, and the speeds vary over time. static uint16_t sCIStart1, sCIStart2, sCIStart3, sCIStart4; static uint32_t sLastms = 0; uint32_t ms = GET_MILLIS(); uint32_t deltams = ms - sLastms; sLastms = ms; uint16_t speedfactor1 = beatsin16(3, 179, 269); uint16_t speedfactor2 = beatsin16(4, 179, 269); uint32_t deltams1 = (deltams * speedfactor1) / 256; uint32_t deltams2 = (deltams * speedfactor2) / 256; uint32_t deltams21 = (deltams1 + deltams2) / 2; sCIStart1 += (deltams1 * beatsin88(1011,10,13)); sCIStart2 -= (deltams21 * beatsin88(777,8,11)); sCIStart3 -= (deltams1 * beatsin88(501,5,7)); sCIStart4 -= (deltams2 * beatsin88(257,4,6)); // Clear out the LED array to a dim background blue-green fill_solid( leds, NUM_LEDS, CRGB( 2, 6, 10)); // Render each of four layers, with different scales and speeds, that vary over time pacifica_one_layer( pacifica_palette_1, sCIStart1, beatsin16( 3, 11 * 256, 14 * 256), beatsin8( 10, 70, 130), 0-beat16( 301) ); pacifica_one_layer( pacifica_palette_2, sCIStart2, beatsin16( 4, 6 * 256, 9 * 256), beatsin8( 17, 40, 80), beat16( 401) ); pacifica_one_layer( pacifica_palette_3, sCIStart3, 6 * 256, beatsin8( 9, 10,38), 0-beat16(503)); pacifica_one_layer( pacifica_palette_3, sCIStart4, 5 * 256, beatsin8( 8, 10,28), beat16(601)); // Add brighter 'whitecaps' where the waves lines up more pacifica_add_whitecaps(); // Deepen the blues and greens a bit pacifica_deepen_colors(); } // Add one layer of waves into the led array void pacifica_one_layer( CRGBPalette16& p, uint16_t cistart, uint16_t wavescale, uint8_t bri, uint16_t ioff) { uint16_t ci = cistart; uint16_t waveangle = ioff; uint16_t wavescale_half = (wavescale / 2) + 20; for( uint16_t i = 0; i < NUM_LEDS; i++) { waveangle += 250; uint16_t s16 = sin16( waveangle ) + 32768; uint16_t cs = scale16( s16 , wavescale_half ) + wavescale_half; ci += cs; uint16_t sindex16 = sin16( ci) + 32768; uint8_t sindex8 = scale16( sindex16, 240); CRGB c = ColorFromPalette( p, sindex8, bri, LINEARBLEND); leds[i] += c; } } // Add extra 'white' to areas where the four layers of light have lined up brightly void pacifica_add_whitecaps() { uint8_t basethreshold = beatsin8( 9, 55, 65); uint8_t wave = beat8( 7 ); for( uint16_t i = 0; i < NUM_LEDS; i++) { uint8_t threshold = scale8( sin8( wave), 20) + basethreshold; wave += 7; uint8_t l = leds[i].getAverageLight(); if( l > threshold) { uint8_t overage = l - threshold; uint8_t overage2 = qadd8( overage, overage); leds[i] += CRGB( overage, overage2, qadd8( overage2, overage2)); } } } // Deepen the blues and greens void pacifica_deepen_colors() { for( uint16_t i = 0; i < NUM_LEDS; i++) { leds[i].blue = scale8( leds[i].blue, 145); leds[i].green= scale8( leds[i].green, 200); leds[i] |= CRGB( 2, 5, 7); } } void colorpalete(){ ChangePalettePeriodically(); static uint8_t startIndex = 0; startIndex = startIndex + 1; /* motion speed */ FillLEDsFromPaletteColors( startIndex); FastLED.show(); FastLED.delay(1000 / UPDATES_PER_SECOND); } void FillLEDsFromPaletteColors( uint8_t colorIndex) { uint8_t brightness = 255; for( int i = 0; i < NUM_LEDS; i++) { leds[i] = ColorFromPalette( currentPalette, colorIndex, brightness, currentBlending); colorIndex += 3; } } // There are several different palettes of colors demonstrated here. // // FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p, // OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p. // // Additionally, you can manually define your own color palettes, or you can write // code that creates color palettes on the fly. All are shown here. void ChangePalettePeriodically() { uint8_t secondHand = (millis() / 1000) % 60; static uint8_t lastSecond = 99; if( lastSecond != secondHand) { lastSecond = secondHand; if( secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; } if( secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; } if( secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; } if( secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; } if( secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; } if( secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; } if( secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; } if( secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; } if( secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; } if( secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; } if( secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; } } } // This function fills the palette with totally random colors. void SetupTotallyRandomPalette() { for( int i = 0; i < 16; i++) { currentPalette[i] = CHSV( random8(), 255, random8()); } } // This function sets up a palette of black and white stripes, // using code. Since the palette is effectively an array of // sixteen CRGB colors, the various fill_* functions can be used // to set them up. void SetupBlackAndWhiteStripedPalette() { // 'black out' all 16 palette entries... fill_solid( currentPalette, 16, CRGB::Black); // and set every fourth one to white. currentPalette[0] = CRGB::White; currentPalette[4] = CRGB::White; currentPalette[8] = CRGB::White; currentPalette[12] = CRGB::White; } // This function sets up a palette of purple and green stripes. void SetupPurpleAndGreenPalette() { CRGB purple = CHSV( HUE_PURPLE, 255, 255); CRGB green = CHSV( HUE_GREEN, 255, 255); CRGB black = CRGB::Black; currentPalette = CRGBPalette16( green, green, black, black, purple, purple, black, black, green, green, black, black, purple, purple, black, black ); } // This example shows how to set up a static color palette // which is stored in PROGMEM (flash), which is almost always more // plentiful than RAM. A static PROGMEM palette like this // takes up 64 bytes of flash. const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM = { CRGB::Red, CRGB::Gray, // 'white' is too bright compared to red and blue CRGB::Blue, CRGB::Black, CRGB::Red, CRGB::Gray, CRGB::Blue, CRGB::Black, CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray, CRGB::Blue, CRGB::Blue, CRGB::Black, CRGB::Black }; // Additional notes on FastLED compact palettes: // // Normally, in computer graphics, the palette (or "color lookup table") // has 256 entries, each containing a specific 24-bit RGB color. You can then // index into the color palette using a simple 8-bit (one byte) value. // A 256-entry color palette takes up 768 bytes of RAM, which on Arduino // is quite possibly "too many" bytes. // // FastLED does offer traditional 256-element palettes, for setups that // can afford the 768-byte cost in RAM. // // However, FastLED also offers a compact alternative. FastLED offers // palettes that store 16 distinct entries, but can be accessed AS IF // they actually have 256 entries; this is accomplished by interpolating // between the 16 explicit entries to create fifteen intermediate palette // entries between each pair. // // So for example, if you set the first two explicit entries of a compact // palette to Green (0,255,0) and Blue (0,0,255), and then retrieved // the first sixteen entries from the virtual palette (of 256), you'd get // Green, followed by a smooth gradient from green-to-blue, and then Blue. |
Would like to know where you bought the micro USB socket. Thank you.